

21th AUGUST 2020

version 1.0

KCT Security Audit and General Analysis

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved

Table of Contents

0 Issues (0 Critical, 0 Major, 0 Minor) Found

Table of Contents

About HAECHI AUDIT

01. Introduction

02. Summary

Issues

03. Overview

Contracts Subject to Audit

Key Features

Roles

04. Issues Found

TIPS : We recommend you to add an Event (Found - v.1.0)

05. Disclaimer

Appendix A. Test Results

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 1

About HAECHI AUDIT

HAECHI AUDIT is a global leading smart contract security audit and development firm
operated by HAECHI LABS. HAECHI AUDIT consists of professionals with years of
experience in blockchain R&D and provides the most reliable smart contract security audit
and development services.

So far, based on the HAECHI AUDIT's security audit report, our clients have been
successfully listed on the global cryptocurrency exchanges such as Huobi, Upbit, OKEX,
and others.

Our notable portfolios include SK Telecom, Ground X by Kakao, and Carry Protocol while
HAECHI AUDIT has conducted security audits for the world's top projects and enterprises.

Trusted by the industry leaders, we have been incubated by Samsung Electronics and
awarded the Ethereum Foundation Grants and Ethereum Community Fund.

Contact : ​audit@haechi.io
Website : audit.haechi.io

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 2

mailto:audit@haechi.io

01. Introduction

This report was written to provide a security audit for the Pibble smart contract. HAECHI
AUDIT conducted the audit focusing on whether Pibble smart contract is designed and
implemented in accordance with publicly released information and whether it has any
security vulnerabilities.

The issues found are classified as​ , , or according to
their severity.

Critical issues are security vulnerabilities that MUST be addressed in
order to prevent widespread and massive damage.

Major issues contain security vulnerabilities or have faulty
implementation issues and need to be fixed.

Minor issues are some potential risks that require some degree of
modification.

Tips ​could help improve the code’s usability and efficiency

HAECHI AUDIT advises addressing all the issues found in this report.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 3

02. Summary

The code used for the audit can be found at
BitBucket(​https://bitbucket.org/dooba202/pibble-klaytn/src/master/src/SmartContract/
Klaytn/PIBwFreeze.sol​). The last commit for the code audited is at
“8ad3dea8b8d189c03362d8b2c44220934840ee07”.

Issues

HAECHI AUDIT has 0 Critical Issues, 0 Major Issues, and 0 Minor Issue; also, we included 1
Tip category that would improve the usability and/or efficiency of the code.

Severity Issue Status

 We recommend you to add an Event (Found - v1.0)

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 4

https://bitbucket.org/dooba202/pibble-klaytn/src/master/src/SmartContract/Klaytn/PIBwFreeze.sol
https://bitbucket.org/dooba202/pibble-klaytn/src/master/src/SmartContract/Klaytn/PIBwFreeze.sol

03. Overview

Contracts Subject to Audit

• PibbleToken

• MintableToken

• StandardToken

• BasicToken

• Owanble

Key Features

Team Pibble has implemented an KCT Smart contract with the following features:

• MInt

• Freeze

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 5

Roles

The Pibble Smart contract has the following authorizations:

• Owner

Each level of authorization has these respective characteristics.

Role MAX Addable Deletable Transferable Renouncable

Owner 1 X X by ​Owner X

The features accessible by each level of authorization is as follows:

Role Functions

Owner

Ownable#transferOwnership()
MintableToken#mint()

MintableToken#finishMinting()
PibbleToken#freezeAccount()

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 6

04. Issues Found

TIPS : We recommend you to add an Event ​(Found - v.1.0)

When running ​ PibbleToken#burn()​, the balance will be updated but a Transfer Event will not
occur. A change in balance due to the function may not be detected if balance updates are
detected upon Transfer Events. Thus, it is recommended that you add the Transfer Event
to your function.

05. Disclaimer

This report is not an advice on investment, nor does it guarantee adequacy of a business
model and/or a bug-free code. This report should be used only to discuss known technical
problems. The code may include problems on Ethereum and/or Solidity that are not
included in this report. It will be necessary to resolve addressed issues and conduct
thorough tests to ensure the safety of the smart contract.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 7

Appendix A. Test Results

The following are the results of a unit test that covers the major logics of the smart
contract under audit. The parts in red contain issues and therefore have failed the test.

 Contract: Ownable
 #constructor()
 ✓ should set owner to contract initializer (41ms)
 #owner()
 ✓ should return appropriate owner (38ms)
 #transferOwnership()
 ✓ should fail if msg.sender is not owner (92ms)
 ✓ should fail if newOwner is ZERO_ADDRESS (89ms)
 valid case
 ✓ should emit OwnershipTransferred event
 ✓ should set owner to newOwner

 Contract: SafeMath
 #add()
 ✓ adds correctly (121ms)
 ✓ reverts on addition overflow (70ms)
 #sub()
 ✓ subtracts correctly
 ✓ reverts if subtraction result would be negative
 #mul()
 ✓ multiplies correctly (65ms)
 ✓ multiplies by zero correctly (71ms)
 ✓ reverts on multiplication overflow (67ms)
 #div()
 ✓ divides correctly
 ✓ divides zero correctly
 ✓ returns complete number result on non-even division
 ✓ reverts on divison by zero

 Contract: PibbleToken
 #constructor()
 ✓ contract caller set to owner
 ✓ contract initializer's balance set to initial supply
 ✓ name, symbol, decimals set properly (83ms)
 ERC20 Spec
 #transfer()

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 8

 ✓ should fail if recipient is ZERO_ADDRESS (75ms)
 ✓ should fail if sender's amount is lower than balance (271ms)
 ✓ should fail if sender's account is frozen (148ms)
 ✓ should fail if recipient's account is frozen (284ms)
 when succeeded
 ✓ sender's balance should decrease (38ms)
 ✓ recipient's balance should increase (88ms)
 ✓ should emit Transfer event
 #transferFrom()
 ✓ should fail if sender is ZERO_ADDRESS (80ms)
 ✓ should fail if recipient is ZERO_ADDRESS (208ms)
 ✓ should fail if sender's amount is lower than transfer amount (169ms)
 ✓ should fail if sender's account is frozen (195ms)
 ✓ should fail if recipient's account is frozen (193ms)
 ✓ should fail if allowance is lower than transfer amount (123ms)
 ✓ should fail even if try to transfer sender's token without approve process (88ms)
 when succeeded
 ✓ sender's balance should decrease
 ✓ recipient's balance should increase
 ✓ should emit Transfer event
 ✓ allowance should decrease
 #approve()
 valid case
 ✓ allowance should set appropriately
 ✓ should emit Approval event
 #increaseApproval()
 ✓ should fail if overflows (322ms)
 valid case
 ✓ allowance should set appropriately (38ms)
 ✓ should emit Approval event
 #decreaseApproval()
 ✓ should set allowance to zero if overflows (93ms)
 valid case
 ✓ allowance should set appropriately
 ✓ should emit Approval event
 ERC20Mintable Spec
 #mint()
 ✓ should fail if msg.sender is not owner (47ms)
 ✓ should fail if overflows (44ms)
 ✓ should fail if mint is finished (100ms)
 valid case
 ✓ receiver's amount should increase

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 9

 ✓ totalSupply should increase
 ✓ should emit Transfer event
 ✓ should emit Mint event
 #finishMinting()
 ✓ should fail if msg.sender is not owner (49ms)
 ✓ should fail if already finished (102ms)
 ✓ should set _mintingFinished to true (72ms)
 ERC20Burnable Spec
 #burn()
 ✓ should fail if overflows (47ms)
 valid case
 ✓ totalSupply should decrease
 ✓ account's balance should decrease
 1) should emit Transfer event
 ✓ should emit Burn event

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/

 PibbleToken.sol 100 100 100 100

[Table 1] Test Case Coverage

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 10

